40 research outputs found

    Electron Microscopic Recording of Myosin Head Power and Recovery Strokes Using the Gas Environmental Chamber

    Get PDF
    Despite extensive studies, the amplitude and the mode of the myosin head movement, coupled with ATP hydrolysis, still remain to be a matter for debate and speculation. To obtain direct information about the ATP-coupled myosin head movement, we prepared synthetic myosin filaments (myosin-myosin rod copolymer), in which myosin heads were position-marked with gold particles via antibodies to myosin heads and kept in hydrated, living state in the gas environmental chamber. ATP was applied to the specimen iontophoretically by passing the current to an ATP-containing microelectrode, and the ATP-induced myosin head movement was recorded with an imaging plate system under a magnification of 10,000×, with the following novel findings: (1) In the absence of ATP, myosin heads fluctuate around a definite neutral position. (2) In the absence of actin filaments, myosin heads move away from the bare region of myosin filaments (recovery stroke, average amplitude, 6 nm) on ATP application and return to the neutral position after exhaustion of ATP. (3) In the presence of actin filaments, the ATP-induced myosin head power stroke exhibits two different modes depending on mechanical conditions. (4) Myosin heads determine the direction of ATP-induced movement without being guided by actin filaments

    Measurement of Nucleotide Exchange Rate Constants in Single Rabbit Soleus Myofibrils during Shortening and Lengthening Using a Fluorescent ATP Analog

    Get PDF
    ABSTRACT The kinetics of displacement of a fluorescent nucleotide, 2Ј(3Ј) amido]ethyl]carbamoyl]-adenosine 5Ј-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibril

    Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications

    No full text
    The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC). The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm). After exhaustion of ATP, myosin heads return to their neutral position. In the actin–myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD), respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca2+-activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP

    Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    No full text
    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles
    corecore